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I. INTRODUCTION

There is an ample class of models of the quantum field theory in D-dimensional
space for which an exact conformal-invariant solution can be built. These models
are equivalent to Lagrangian models from a certain viewpoint described below.
A method for their exact solution is proposed in the present paper. A closed
set of differential equations for all the Green functions, as well as algebraic equa-
tions for the scale dimensions of the fields, will be obtained in each model.

The method is based on several statements proved in {1], see also [2, 3]. The
Thirring model is simplest in this class of models. Its solution using the described
method is presented in [1, 3]. Here we mainly discuss the theories in the D-
dimensional space. A new class of models that have not been considered before,
is derived at D = 2. Some of these models coincide with the minimal models
of refs. [4, 5]. This is true particularly, for the two-dimensional Ising and Wess-
Zumino models. The infinite-parameter symmetry in the rest of the D = 2 models
is not realized.

The models in D-dimensional space with D > 2 have a peculial feature: non-
trivial solutions are possible only if there is a scalar field P of scale dimension
dp = D — 2. This field is analogous to the central charge (*) of the D = 2 theories.
It appears in the commutator of the energy-momentum tensor components.
Normalization of the 3-point Green function (Pgpyp), where ¢ is a fundamental
field, is one of the theory parameters which are calculated in the course of solu-
tion. The field P(x) becomes a constant at D = 2, and this parameter coincides
with the central charge.

. IL. PRINCIPAL STATEMENTS

1. In any conformal quantum theory of the scalar field ¢(x), irrespective
of the type of interaction, there exists an infinite set of symmetrical traceless
tensor fields [1, 2]

P =Pits ()
induced by the current of the energy-momentum tensor. These fields appear in
the operator expansions of the products or

T, (x)elx,) or j (x)wlx,)

in powers of the difference x,. Scale dimensions of the fields P, are equal to

(*) The central charge has been discovered by Gel'fand and Fuks (see Functz .Analiz. 2
(1968) 92).
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d‘ =d+s

At s =0 the field P, coincides with the fundamental one: P‘ | =0 = P
the vector field PZ +1 s involved in expansion of the product j“np only, but
not of Tw ¢. The proof that these fields exist is based [2] on the Ward
identity.

2. It can be shown {1, 6, 7] that every operator equality:
e.n P‘ =0 for a certain s

where P, is the field from the expansion of the product Tuv(xl) »«p(xz) is
equivalent to a set of closed linear differential equations for all the Green func-
tions of fundamental and composite fields. More exactly: each equation

(2.2) (P06,)@(x,) ... 9x, )Y =0

is equivalent to several differential equations of the form
a

(2.3) L (x, ;)(v(xl), cep(x, =0
x

where L (x, 3/ox) is a differential operator of the (s + 1) order depending
on all the coordinates. Its form can be calculated [1, 2, 7] from the Ward iden-
tities. It is very complicated in the general case. The results are given below
for the simplest D = 2 models.

3. Equations (2.2) are true provided that composite fields O, are present
as well. In case of 3-point functions we have [1, 3]:

(P90 )y=LY 0 )=0

where Lg') is a differential operator. Since the coordinate dependence of the
Green functions <{pp O ) is known we determine algebraic relations for the
dimensions d and d_ of the fields ¢ and 0,-

The scalar field PP? with the scale dimension dP = D — 2 is especially
important among the composite fields. It appears as an operator-valued (at
D > 2) Schwinger term in the commutator of the energy-momentum tensor
components and contributes to the Ward identity for the Green function
(T uv ® Tp o7» see (9.1). It is essential that thisis the only Schwinger term
compatible with the conformal invariance. We have:

(24) (‘P(xl ) ‘p(x2)PD -2 (X3 )) =
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D -2
1 xfz 2
24 =— C-( ) (plx, ) p(x, 1)
144 & xf3x§3 4 2

where C isa constant that can be found from the equation
(s) 0
(2.5) (P, ‘pT,w>=LT (x, ;)-C (poT, )=0

and the Ward identity for the Green function (pT v T ), see Sec. IX.

For D =2 the field PP % becomes a constant: P5 -2 | pes=—1/1447C,
where C coincides with the central charge of two-dimensional theories (its
values for models of the given class are presented in Section X).

There is another composite scalar field x ~ 902, with anomalous dimension
A. Similarly to (2.5) we have:

(PpPP =2y = LW (ppPP =2y = 0;
(Pox) = Li”(tp«px) =0

The first of these equations is fulfilled if D > 2, since PP 2 | p= o = const.
It can be shown that using (2.5), two relations for the scale dimensions d and
A can be obtained from the equations. One of them is (for D > 2):

f(l.\') «, A) f(z.\') , A)

(2.6) =
A@p-2) £,9dp-2)
where
A+ 2s
r
0 2 [d 1
d A= ———|—@Qd+s-D)+— (A—2d) -
1" —_—
2

1 AQA—2)D -14) 1 A(A+25)(A—D+2):|
-+

4 (D + 2s) 4 (D + 2s)
(2d—A+2s
F———_—
2 [A A
~1y — Qd+s-D)—— —
+ (-1 D( s—D) 5

=
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1 Ad~A—2)(D~2d+4A) 1

4 (D + 2s) 4

>

A(2d—A+2s)(2d—A—D+2)]

(D + 2s)
A+ 2s
o[+
PO 2 [d
—f§7@ &)= | 4D+ @20~
F—
2 (2d—A+2s
F%‘
1 2
——A(A—D+2)]+(—1)’
2 2d—A
o=
- 2

A 1
[— (2d—D+2)—A—-—-A(2d—A—D+2)J .
D 2

4, Every operator equality (2.1) can be derived from a certain Lagrangian
theory regularized in an appropriate way. [6, 7].

The Thirring model is the simplest case for illustration of the above statement.
The spinor field ¢, with the dimension d; =d + 1 that appears in the operator
expansion of the product Y(x) j” (x + €) makes an analog of the field P in the
model. The operator equation ¥, =0 completely determined [1, 3] the solution
of the model and is a direct consequence of the field equation oy = ?\7”]'#;!/.
A similar situation is also observed in the Wess-Zumino model, see Section XI.

I11. FIELD EQUATIONS

The theories where the fields PS are generated by the operator product
gD(XI) T W(xz) refer to another class. Let us consider, for example, the theory
with the interaction L, . = At in the D-dimensional space, where ¢ is a
neutral field. The theory, in this case, requires being further defined. Let us
regularize the total Lagrangian by adding the term A/2 (Dw)z, where A is
the regularization parameter, A = 0. The solution of this theory is determined
according to [6, 7] by equation (2.1) with s = 2. Really, let us write the field
equation in the form:

(3.1) z,(A 0% + Oy — 5m’p) = Az, ox
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where x ~ wz is an intermediate field, and the renormalization constants Z, 5

and &m? depend on the parameter A. The operator product ¢(x) x(x) in
the right-hand side is finite as long as A % 0, and diverges when A - 0. The
, tends to zero together with A; thus we have an ambiguity 0 x oo
in the right-hand side. To resolve it the product ¢(x) x(x) should be found
when A # 0. This product can be defined by setting the arguments of the fields
apart so that they be separated by the A-depending vector €, =€, (A):

constant z

(3.2) o(x) x(x)| ,,, = /dﬂe P(x) x(x + ¢€)

reg
fd Q
€

implies averaging over the angles of the vector €,- It follow from considerations

where

of dimension that
(3.3) €2 ~A
and for the renormalization constants we have

d-§+1 A-
» 2y~ A .23~ A ,5m~7\"

©ly

A_D
7 2

d

3.4) z, ~A
In the theory thus defined the role of the regularized field equations reduces
" to fixing the first terms in the operator expansion of the product of the funda-

mental fields ¢(x) x(x + €). Really, after substituting (3.2) - (3.4) into (3.1)
the field equation can be written as

/a'ﬂ,E p(x) x(x +€) =

>

= (e?)
On the other hand, using the contribution of the field PL t 2 into the above
expansion in which the Ward identity is responsible we would get an additional
term 9, 9, PL M 2 in the right-hand side
A

(€2) % .. +a, (€ [0? px)+39,0 Pa+2(x))

[T 13 4

{a,0(x) +a €2 O (x) + a,(€*)> O p(x))
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It must not be there according to the equation. I'herefore, it should be required
that

+ 2,0y —
PAr2(x)=0
A certain class of more complicated Lagrangians, each of them with several

scalar fields ¢(x) can be treated in a similar way. For each of them the theory
solution is defined by one of the equation (2.1) with s> 2.

IV. CONFORMAL EXPANSION OF THE GREEN FUNCTIONS OF THE
ENERGY-MOMENTUM TENSOR

1. Each of the Green functions can be presented as a conformal partial wave
expansion. For scalar fields we have:

14 s A
TN C Sy B0

where C/ ~ (gaxPi) are invariant functions, Pi is a tensor field of dimension
! and spin s. Each pole of the Kernel Gl,s in the point / =/, in (4.1) cor-
responds to the tensor field Pfo in the operator expansion of the product
P(x) X(x +€)

Is A P:"
“4.2) res = @ :
=1, .- \ . . :

where

Gpo =4oxB) Gy = res Gy =B g )

This result is the bases of all previous applications of the method of conformal
partial wave expansions, see e.g. [1, 9] and the references therein. In particular,
separating only the contribution of the field P:l' into the operator expansion
o(x) x(x + €) at e >0 we have:

4.4) (P x(x +€)¢...0]| L, »/dy % (x, x + € )Pl (¥ ...

where
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1 ~
chs = ———D—}Q"'(xlxzx3) - /AI"(x3y) O (x X, ¥)dy

wsinn(l———
2

A'* being the invariant propagator.

2. There is a more complicated situation where the Green function (4.1)
contains some tensor field instead of x. The conformal invariance admits several
different functions C’* when the external field is a tensor. For example, for
the tensor of rank two there exist three types of functions C*¥ (at s> 2):

(4.5) (P! oT,,)= aC’l':w + gCts

1,5
Y +vC

3pv

where o, §, ¥ are arbitrary constants. Explicit expressions for these functions
are given in [2, 8]. The analog to the expansion (4.1) in this case is:

o T e O
+ T

If all of the three kernels Gg) have a common pole in the same point /;,
then there are three different fields Pl(f)‘ of the same dimension /. The Green
0

functions of these fields (for a given s and different i’s)

4.7 <P,§"3 0. .., <P,§"} o, ), i=1,2,3
are different. However, the functions
(4.8) P ox) ~ (B2 o) ~ (B o)

have the same coordinate dependence. The same thing is true for the two-point
Green functions '

(1) p(1)y (2) p(2)y (3) p(3)
4.9) <P1,,s PI‘)Ai ) = <P10s P,ax )= (PIOJ Plos ).
We assume besides that

(4.92) W PR =0 for i# k

3. Let us consider the contributions of the fields P, into (4.6). We are going
to show that the Green functions (PSS") "OTuv> can be presented as a certain
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combination of a power function with two types of quasilocal terms (see (4.14)).
Indeed, the conformal-invariant Green functions CI{" = Cli'“ , have the following
structure. All of them have poles (see [2, 10]) in / =d + s due to the factor

D+1l-d-s

(xfs)— :
We have [11]
_D+€ 127|'Dl2
(4.10) o) 2 | Lo=—— B(x)

It can be shown [8, 10], that the residues in the poles meet the relation

; 1 1, '} —
4:11) DD - 2) ; rei, Cl'“p+D lzrgsﬂ CZ’“ + res C¥ 0

I=d+s 3Bv

Therefore, there is a regular combination

(4.12) Creg = p(p - 2)CY,, +DCY,, +CF,,
equal to [10]
(4.12a) C;"vg |I=d+: = (P'(xl)‘p(xz) Tw(x3 »= {3+
D L-2r. . 2 - e
P ey [ajjs -5 @30 +750 ) -
D_—Z
2

5 -

— trace (x13)
- <

3, = 3,—9,,

x — X X _
)\“1 - g (x3 x2) = )\ﬂlx (x3 x2) ')\#ls (x3 xz) traces,

*1 X, X
7\#,.. u,( 3 2)’

X x.) = (x12-)n_(x13)u
W X3 XT3 )
12 13

where {...} denotes quasilocal terms that contain derivatives of rS(x13 ). They
are too cumbersome for being presented here. Two other functions at I =d + s
are obtained by calculating the residue of Cll"2 . We denote them as:

Is
] _ s ] .. res C
(413) Cll-“’_1=r;i, Cl‘“}, C2I.ll’_l=d+‘ 2uv

Explicit expressions for them for s> 2 are very tedious, being simple only
fors=1:-
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2 y-d s
Cluva(xlz) [.supa’; 6(x13)+

(x

+2D5, —

8(x;3) + (pov)— trace]
x
12
Therefore, the general expression for the Green function (P‘(i) oT “) can be
written in the form (s > 2)

(i) = r () s )
(4.14) PD T, ) =g, CT% +aP ¢t +old

2 2uv
where 8; Ol(li) and oz(zi) are constants. The important feature of these functions
is that they have the same (up to a factor) power part C'“ °t.

4. We are going to show now that only two, out of the three, fields P‘“)
can contribute into expansion of the product p(x) x(x + €). Let us pass now
to the new fields

3
(i) i p(k)
P, - k}: o P:
=1

preserving the conditions (4.9) and (4.9a). The new fields should be chosen
so that one of the three (at a given s) Green functions (P‘(i) goTw) consist of
quasilocal terms only (4.13):

1) -
(4.15) P2 oT p=a,Cf  +a CYun
The corresponding Wightmann function in the Minkovski space is equal to
Zero: ‘
1 -
(4.16) O PV oT,, | 0y =0

It can be assumed, thus, that the field P'“) is absent: it is zero as an operator.
Then it is possible that

(4.17) (P:“) wx) =0, (Ps(l) T, ) = quasilocal terms.

Later this assumption should be verified by studying the function <{pxpx).
Condition (4.17) means that the pole corresponding to the field Ps(” is absent
from its partial wave expansion, although there is such a pole in the first term
of the expansion (4.6). Note, that the operator equality P‘(U = 0 means, besides
(4.17), that <{ppy Pf”) = 0, etc. For our purposes, only the condition
<Ps(1) wx? = 0 should be verified, since it ensures that there is no contribution
of the field P‘(I) to the operator product ¢(x) x{(x + €).

The quasilocal terms (4.15) are needed in the theory even if P{1) = 0. Their
sense will be discussed in the following Section.
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Therefore, the operator equation (2.1) as a matter of fact implies that

(2) _ p(3) —
(4.18) PO =p®) =g

V. COMPLETE CONTRIBUTION OF THEPOLES IN/=d +

1. Let us consider the Green function {pxeT #V). Its partial wave expansion
can be written in the form:

[ X
G.D loxeT, ) = Z dl p(l, s)
oY fasas

l,s _ 1,8
(5.2) Cu: =4, s)C , +A4 (ls)CZ“

where

v
The function Al 2(l, s) and p(l, s) are derived [2, 10] from the Ward iden-

tity,

(5.3) Cr =C"¢8 + B (1 s)CY,, +B,(5)CY

2uv

The coefficients B1 2(l, s) are derived from the transversality condition
aﬂcyu = 0. We have [8]:

1

l—s-d
"=
' 2

ie. CL’D differ from C'I1 % | see (4.12a), by quasilocal terms only.
The complete contribution of the poles in the point ! = d + s can be de-
termined from (4.4). It is equal to

(5.5) (p(x) x(x + €) p(x ) T, e, D Lo~

1
~— s tr ~tr
Aos (pl Cluv +p 2uv)+ =rdei: p C#u

(e*) ?

(5.4) B (1, 5)~B,( 5)~

The coefficients Py, =pp, ,(d, s) are determined by the Ward identity.
The right-hand side is the common contribution of the fields P(z) P(3 ) and
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quasilocal terms (4.15):

] H t r _
(5.6) pl Clﬂv+p2 Cluu+ I=’;§_’ p ’C#u -

- 2 3
=ay O, +0y CY  + P oT, )+ (PP) oT )

Here we took into account that with regard for (5.3), (5.4) and (4.13) one
can write

(2
(5.7) (P2 T, )+ (P oT )=

- s s tr ~t
_ﬁl Cl;.w +62 C2uv +l=rde:gl-l p § Cy’v
Thus, the Ward identities fix the sum of terms of different nature: a part
of the common contribution of the fields P‘(Z), P‘(3) (the terms ﬁl C‘IMV +
+8, C‘zw) and the contribution of quasilocal terms (4.15). We have

(5.8) o + [31 =p, , s), o, + ﬁz =p, d,s)

Assuming, in accord with (4.18), that Ps(z) = P,(3) = 0 for a certain s, we
shall obtain a number of consequences in the sections below. One of them is
that 61 = 62 = 0, and in (5.5) only the contribution of the quasilocal terms
(with the same s) is preserved:

1
(5.9) {o(x) x(x + E)sDpr>[ o ™~ T (o, C'lw +a, C;“V)
(62)_2‘

where o and o, are fixed by the Ward identity. Note that these terms are
needed in the theory. If we demand that they be absent (i.e. connect them
to the field P{)) and assume that P1) = 0) then the contradiction to the
Ward identity appears. The meaning of these terms is that they contribute to
the field equation for the Green function <WT#,,)- These are just the quasilocal
terms which appear from the commutator [, 7, 0“] when calculating the deriva-
tives O and % of the T-ordered product of the fields T v A detailed
description one can find in [10] where the Green function {(pp* j“) containing
the current is taken as example. The corresponding terms there appear from the
commutator [y, j,] when calculating the derivatives [ (Wj#) in the field

equation.

2. Let us find the solution of the Ward identities for arbitrary Green functions
G,E'L) = (Tw e(x,), . .., 9(x, )). We are going to show that two out of the
three kernels G in (4.6) are uniquelly determined by the Ward identity, see
(5.13). We take advantage of the fact that au T“V is transformed [9] as a con-
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formal vector of dimensional D + 1. The quantity a“ GL'L) is completely deter-
mined by the Ward identity and, thus, it is possible to find the kernels of its
partial wave expansion. It involves two invariant three-point functions of the
form V‘l“‘ =9, (Pi v Tw). It is convenient to choose in (4.6)

Cl =C'r
3uv uy
Then the two invariant functions V’l'“ and V'2'# in the expansion of
a” G(;'v) are equal to:

Is _ I Is _ 5 Cl
(5.10) Vi, =0,Cf Vs, =9,C3

"l W73 2uv

Their forms are given in [8]. We have:

(5.11) a‘.le";’=Z; jdl[ * ]

The kernels G (1”1)‘ and G(z”l)' are unambiguously determined in terms of
the quantity a“ G(:V) , see Sections VI, VII, that in known from the Ward
identity. The functions V’l‘v and V’Z'v have poles in the points [/ = d + s.
The total residue is equal to

(n) _ : :

where
— s n)y _ H(n =
Vie=res Vi Gides= Gl imass i=1,2
The partial wave expansion of the Green function G("V) can be easily restored
from (5.11). When going from 3, G(:v) to G(:V) the following replacement

should be done
(5.12) vie o =l

luv luv

+ A(, ) C*r

uy?

ls

Vi s cff =B s)CT 4+ ———
2v uv l"(l——d—s) 2up

2uv
and a trasverse term added. Whatever the unknown coefficients A(l, s) and
B(l, 5s) in (5.12) are, one can always pass over to such combinations of the func-
tions (5.12) that Cl":v satisfy the condition (5.2). So, we have for the Green
function
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(5.13) G =Z;/d1[
:

This is the general solution ‘of the Ward identity It has the following features:
1. The kernels G~(1”I)! and GU) = 1/4 —d ~ 5) G(") are known from the
Ward identities;

1 _ . .
2. 1=r§is C:V = C’lw @, C‘zﬂu = quasilocal terms;
"l _ ! 1
3.G 0 1mass =8, CYyy +8,CH,, +B' @ 5)C], (5.14)

where the constants o 5 and 61 , are known from the Ward identity.

4. The kernel G(”) has poles in the points I =d +s.

5. The third term in (5.13) is transversal.

6. The function B'(d, s) in (5.14) and the kernel G) in the third term
have remained unknown quantities.

(n) — (p(2)
7':=fzest“-'_(P' Q...

V1. CONDITION FOR THE ABSENCE OF THE FIELDS P,
Our task now is to study the consequences of the equations

6.1) (PP o y=PPyp ...p)=0

To this end let us express the Green functions (P,(i) 155 9,) Withi=12,3
in terms of the kernel of the partial wave expansion (4.6) of the Grqen func-
tion G0 =(T ,¢/,...,9,), see (6.10) below.

The contribution of all the poles in the point / =d + s to the Green func-
tion G(:V) can be written in the form (see (4.2) and (4.6)):

6.2 G = : @ @ 4o
N N R Y O (R

Here the function C”V is chosen so that its residue in [ = d + s coincide
with the quasilocal term in (5.9):
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Is _
(6.3) res C“'v =0a Cl‘w + o, ct

I=d+s 2pvy

while GU')| , is the contribution of the fields P{*) and P{*) together

The green functions G(Z) and G (3) can be written in the form

(6.5) G = (PP oT )y =g,Cle8 +o{DCY  +PCY,,

(6.6) G =(PDT =g, C18 +oDC]  +dPD Y,

As assumed in egs. (6.2) and (6.4) the invariant functions C’,:‘ v in (4.6)
are chosen as follows:

] 1 (2 l — (3
(6.7) Clxpv—cusv 2pv|I d+:—G ) C3'uvll=d+s_Gl )
The Green functions then
(6.8) G2y =B P, .., Gy =B D g, ... )

are derived as residues of the kernels G(lf) and G(lf) in expansion (4.6).

Let us express these kernels in term of the Green function G‘:g . For doing
this, similarly to [1,2] we introduce three more invariant 3-point functions
of the type of (P"cpT ) where @ is a scalar of dimension D — d, and T
is a tensor of zero dlanSlOl’l Their notations are C"“, C’z',w and Cls',w
These functions should be selected so that the orthogonality conditions be

fulfilled

etc. Normalization of the functions Ci" is established by the condition

I W—— )
(6.10) @-e W=J =123

The notation in (6.9) and (6.10) are the same as in [1, 2]. The dot on the
line means that it has been already amputated; therefore, here it is 6-functions
and not propagators that are put in correspondence with the internal lines.

Now we have for the kernel Gl(f) in (4.6)
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; I,S %

More detailed description of relations (6.9) - (6.11) will be given elsewhere.
A more simple case of the current containing functions is considered in [1, 2].

Using equations (6.11) we obtain two conditions for each Green function
G
uv

IN]
6.12 =0
61 e (G 1G0)
I,l' ——
6.13 r D=0
©13) e (G GnY

for the given s.

Equations (6.12) and (6.13) represent a sufficient condition that ensures the
absence of the fields 'P:. This statement refers to the field theories at D > 2.
There is solely equation (6.12) in the two-dimensional space, see Section X.
In this case (6.12) is necessary and sufficient condition for the field P‘ to be
absent.

VII. DIFFERENTIAL EQUATIONS FOR THE GREEN FUNCTIONS

Let us transform the conditions (6.12) and (6.13) to a more suitable form.
Introduce new fields

3
PO = 3" of PB, i=1,23
k=1

so that the orthonormalization conditions (4.9), (4.9a) be preserved.

The coefficients 0‘; form a three-parameter matrix family of the group SO(3).
There is a unique choice of parameters with which, firstly, the function
(Ps'(l) v Tuu> remains quasilocal, see (4.15) and, secondly, the Green function
(P33T, ) transversal:

(7.1) ¥ (P x ) ox)) T, (x;))=0

Here and below the primes for notation of the new fields are admitted.
The choice of the fields is unambiguously set by these conditions. With such
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a choice of the fields it is convenient to use partial wave expansion of the Green
function G(:v) in the form (5.13). Residues of the kernel G(Z”Ii and G(;’l)‘ in the
pole I = d + s are explicitly expressed through the Green functions G(;"?z)
and G(}:’s&) of the original fields. The total contribution of the fields can be
now rewritten in the form '

(n) - : .

Unlike (6.3), the second term here is transversal
In addition to (6.9) let us demand that

& OBOLELOND

I

i.e. that 51 and 52 be orthogonal to the transversal function. As it is shown
in [8, 10], such functions C are “longitudinal”. For 62‘“), particularly, we
have {7, 8].
. —¢pl = a _
(7.4) Czuv(x1 X, Xy)= (Py, ) ”s(xl) xp(x22) Tw(x3 N =
X3

= » B X -
afl Vil Mg + avaBp,pr.. Mg D apva)\ B)\,p.l... Mg

The orthogonality conditions (7.3) are fulfilled idenfjcally if 51 and 62

are substituted in this form. The functions Bu o ng € equal [ 8] to:
. ’

7.5 = o
(7.5) By ouF1 Xy X)) =By, Xy X))+ EB, L, (e xxg)
= \% ¢ *1
g g = N X)X (X)) A (g X, x5)
1 s
B = — Z 1oL X (
2H,My . by x2 guyk(x13))\u,...uk...ys(x3 Z)A(xl x2 X3)
13 k=1
I+d -D -d -2 I+d-D -3+12

2 2

2y 2
Axy Xy x3) = (x73) (x33)
Il-d+D-s+2
2) 2

(1,
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X X

gw(X) = fiw -2 and )\f‘:’-'/-‘s (x5 x,)

X

are given in (4.12a). There is an unknown constant « in (7.5). It will be deter-
mined later. The function 51;“; differs from C~’2”p by this constant value.
Let us again consider the conditions (6.12) and (6.13). With our choice of the
functions 62;“: and 5'3‘” one of these conditions is equivalent to the require-
ment that the first term in (7.2) be absent, while the other implies the absence
of the second term. Let us consider the first condition. We are going to demon-
strate that it is equivalent to the differential equation for the Green function

Glxy x, ooox, ) =Ap, ()0, (X)) .., (x,)).

Really,

res /dyl dy2 C '(xl ylyz)

I=d+s Zuyapy b

(”01 (Vl) T“V(y2)‘p2(x2) CRE ‘Pn(x”)> =

- ¥
2,=r§is/dy1 dyy B o usX1Y172) 87

W, DT, () e, ())& D)

Let us substitute here aJl: : g, T#V¢2 ..., ) using the Ward identity:

a-’:ﬁ <‘pl Tuu‘pZ T ‘pn> = _I:Z 5(y2 ﬁxi)a’:i +.. ]

(p, 0 o, (x,). .. (x,)).

The integral over y, can be calculated due to the S-functions (the term
proportional to &(y . y2) makes zero contribution). The remaining integral

over y, can be also calculated. Let us introduce res  under the integral
I=d+s

sign, and then determine the residue of the expression in the integrand using
relation (4.10). As a result, subject to the integration over 1, is the sum of
terms with derivatives of rS(y1 — xl.) up to the order (s + 2). It can be shown
that the derivatives of higher order cancel out.

Calculating now
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we obtain the differential equation

° ° (x;) x »N=0
s e — ), (N =
"oax ax_ nons

(7.6) LW (xl X
1

where the differential operator L(*) depends on the tensor structure of the
fields o; and on the form of the Ward identities. In the general case this equa-
tion is extremely cumbersome and will be given in another paper. The calculations
become essentially simpler in the two-dimensional space. At D =2 and s =2
they give [6, 7]:

3 1 d
7.7) @y ﬁ e sty
2d+ 1) e X, 2

A + \—2 2 N—2
“2—[("12) +(x7,)7 7]

(ol ) x(x,) o(x5) x(x, N =0
, *ix, are the light cone variables. This coincides with the equa-
tion in [4] for the two-dimensional Ising model. The two-dimensional models
for all s are studied in [12]. It is shown, in particular, that at D=2 and s = 2,
3 equations (7.6) coincide with the corresponding equations in the minimal
models in paper [4], see also [13] and the reference therein, whereas at s > 4
they differ from them.

Note that the differential operator L) in (7.6) depends on the parameter
& involved in the function (7.5). This parameter is calculated together with the
field dimensions and other parameters of the theory, see Section IX. In parti-
cular, when deducing equation (7.7), it was taken into account that & = 1/4
for D =2, s = 2. The third derivatives, at this value of &, are cancelled from
.7.

After differential equations (7.6) have been solved one may address the condi-
tion (6.13). The only thing to do now is to verify if it is fulfilled, after of the
solution of equations (7.6) is substituted into it for the case when one of the
fields is the energy-momentum tensor. In particular, for the Green func-
tion (o x ¢ T‘w > determined from (7.6) the condition (6.13) will mean that
at a given s the pole in I/ = d + s in absent from the second term of expansion

(5.D.

where x, =x
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There remains one more condition of selfconsistency mentioned at the end
of Section IV, which provides the absence of the contribution into ¢(x)x(x + €),
from the field P:“) see (4.17). To check it we should consider the partial wave
expansion of the function {p x ¢ %), derived from (7.6) and see that at a given
s the polein !/ =d + s is absent. This condition is identically fulfilled in two-
dimensional models.

VIII CALCULATION OF SCALE DIMENSIONS OF FIELDS

Dimension d, of any composite field 0a is determined from the condition
(6.12) written for the Green function (gaT‘w ¢0 ). We have:

>
o (ST T o
I=d+3s N

In particular, there are two scalar composite fields: x and PP -2 The field
PP~2 has been already mentioned in Section II, see also Section IX. Its dimen-
sion is known: dP = D — 2. Let us consider condition (6.12) for the Green
functions

X — P _ D -2
G#u—(apx«pTw) and G#V—(<pP «pTM).

We have:

1,5 ~ 1,5 4
res - = res =0
I=d+s ~ l=d+s ~

These equations produce two equations for dimension d and A of the fields
¢ and x:
(8.1) 9@ )y +ard (d 8)=0,

f8(d,D-+afi(dp-2)=0

where fi‘) and fés) are functions (2.6), and & is the parameter involved
in (7.5). Thus, parameter & is still to be determined.

For doing this we consider equation (6.12) in the case of the Green function
Gp = (apTw «pro ). Its partial wave expansion requires special discussion, because
formally it has poles of the second order in the points / = d + s. They also
can be found in every term of the expression under the sign of l:r;i . in equa-

tion (6.12). We have:
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=b,(,)CY,, +b,U,5)CY,, +b,(,5)CY

3uv

where the functions bi(l, s) are derived from the Ward identity (9.1). It can be
shown that they have poles in the points / =d + s:

I—d-—s
bl(l, s)~b,( 5)~b,( s)~I‘(—2— )

The requirement that the fields sz) and P,(3) be absent is, in this case,
equivalent to the three algebraic equations

(8.3) res b (,s)= res b,(I,s)y= res b, s)=0
1 I=d+s 2 I=d+s 3

I=d+s

Substantiation of this statement requires elucidation of some nice technical
details (*) that are not presented here. We only notice that if (8.3) is fulfilled
at a certain s, then only one pole term remains in the partial wave expansion
in the vicinity of I =d + s:

(8.4) 0 €(1 5)

where p"€&(l, s) is regular, and C‘:p is a singular function determined in (6.7)
and (6.5). Although formally the term (8.4) has a pole of the second order,
in fact this term leads to the first-order pole in the expansion of the Green func-
tion (p(x + €) T W(x) ‘pTuu) with respecto to €, because the function é’:y
analogous to (4.4) is regular. The residue in the pole is proportional to quasi-
local term (5.9). Conditions (8.3) provide the absence of other contributions.

So, the condition for the fields Ps(z' 3) to be absent in the case of the Green
function G, is equivalent to three algebraic equations (8.3). They determine
the parameter & together with two additional parameters involved in the anoma-
lous Ward idendity for (p Tw, T o ).

(*) It can be shown that conditions (8.3) provide cancelling of poles of the second order
in the sum of terms in the right-hand side of equation (8.2). (4.11) is used in the proof.
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IX. ANOMALOUS WARD IDENTITY

The most general form of the Ward identity admitted by conformal invariance
involves anomalous terms of two types (at D > 2)

AT, )T (X)) e(xs) (x,)) =
T l Blxy3) 8%, + Blxy,) 054 —

d
= = B [Bxy) + Blx, ) +

+8(x15) 872 — 2a3 87 8(x1,) (T, (x)) 0(x 3) 9lx ) )

+2{a, 0751 8(x ) )(T, , (x,) 0lxy) o(x, ) +

+ as’a;ﬁ 8(x ;) SVP(TTaw) + (p 0) — trace}

+1C 051 8(x ) 8207 +2C, 071 8(x,) 3,7 3 +
(9.1) +20; 3% B(x))) 8, 8% 0% +e ¥ 0N b(x,,) 8 +

+2e, O 07 8(x,) 00 +2e5 8, 07 B B(x;,) B

+e, O8(x ) 8, 8% +3f, 8% 0% 0% 8(x ) +

+3£,8,,07: 0 80x;5)

+ (p < 0) — trace }APP =2 (x,) wlx,) wlx, ),

where (DP -2 o) is the Green function (2.4)

D
Da1+2a2+2a3=-2-, 2, —2a, =1
6
Clz__—fza
D-1)D-2)
C 30 f C,=C
9.2) 2 = xD_DHw-2) ¥ 3 =4,
3D
elz—'——fzr
D—-1)D-2)
3D —4D+2)
fz,

2= DD -1 (D -2)
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3D
e, = f »
3 2AD -2) 2

6 3D-2
€4 = 1y fy=m o
(D -2 DD - 1)

The calculations are given in our (with V.N. Zaikin as a co-author) paper
[121.

In fact, one may put f, = 1, because an unknown normalizing factor C
is involved in the Green function (PP -2 @), see (2.4). Therefore, there are
two unknow parameters. Let them be 2, and C.

The functions bl, b2 and b3 in (8.2) are derived from the Ward identity
and expressed through these parameters. Thus, the equation

1,5 7
9.3 res A @ @ =0
( ) I=d+s :

is equivalent to the three algebraic equations for three parameters

(9.4) & a, C

From the abovesaid it follows that the anomalous terms in the Ward identity
are needed due to the structure of the theory, because without them the number
of equations would exceed that of the parameters.

X. TWO-DIMENSIONAL THEORIES

Setting D = 2 in all equations we obtain an infinite family of two-dimen-
sional solvable models. All the calculations become much easier at D = 2 because:
1. There are only two independent invariant functions of the type of
P " T “p). Any asymmetrical traceless tensor T L,y AN be represented in the
form: Tuv = auTV + aVTu — 6u o, T, therefore, any conformal-invariant

v AT A
function is representable in the form (7.4).

2. There is no transversal function C"’f 5 thus, instead of two fields P,(2)
and Ps(3) only one field Ps(z) = P, is available. Equation (6.13) becomes un-
necessary, and (6.12) is still equivalent to the differential equation, see (7.7).
All calculations of Section VII can be formally transferred to the case of D = 2.
The calculations can be easily carried out in the light cone variables.

3. The anomalous Ward identity essentially simplifies: the terms ~a;
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disappear; the field PP -2 s constant; and out of the last nine terms in (9.1)
only two terms differ from zero; also, the third term is absent from (8.2). Thus,
at D = 2 equation (9.3) is equivalent to the two algebraic equations

res b1= res b2:—-0
I=d+3s I=d+s

for the two parameters
o C

where C is the central charge.

Detailed calculations for the simplest model fixed by the equation Pz : 2=-90
are given in [6, 7], and in the general case of arbitrary s they are presented
in ref, {12]. In particular, for the parameters & and C it is obtained there that

_ 1

o= — —
2s

C=12T 1) fa+ b (-1 : d

= -1) (1Yl -— s+ 1)dd+s5s—-2)—
s l"(d+s+1)% 4(s Yt s )
1 Nd+s-1) {d+s—1 1

- — @d-1)d-2) ( -

I's+ 1) I'(d) d+s—2 s+ 1

This coincides with the Kac formula [14] at s = 2, 3 and the corresponding
models coincide with the minimal models of ref. [4]. Theories of a new class
appear, however, at s > 4, for which the infinite-parameter symmetry is broken
down to a six-parameter one.

The infinite-parameter symmetry models also can be obtained using this me-
thod. To this end it should be extended to the case of gauge theories and then
the averages of nonlocal objects like the conformal string of paper [15] should
be considered. This is possible for any D. Gauge-covariant fields will serve as
analogs for the fields P At D = 2, in particular, they are certain combina-
tions of the fields P and of analogous fields generated by the operator products
Tw(xl) Ps(xz). These combinations will obviously coincide with the zero fields
that define the minimal models. This generalization of the method will be studied
in the subsequent paper.

XI. WESS—ZUMINO MODEL

There are models where the fields P, are generated by a conserved current
rather that the energy-momentum tensor. The Thirring model is a simplest
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example [1]. Generally speaking, this is possible in the theories with no less than
three different conformal-invariant functions of the (j# ¢ P) type. The two-
dimensional Wess-Zumino model

1 .
- — -1 2
S = 4)\zftr (aug a“g)d x +

k
* oa e15C r(g=10 887 10,887 10 8) 3y

belongs to this class. There exists the conserved current
. . -1
i, —(6”v+zaew)g 0,8,

where

(11.2) o= Ak

4r
Let us consider equation

(113) (8, +ie,,)d,8(x) =g(x)j, &)

where the right-hand side is treated as the limit of operator product g(x + €)

j# (x) averaged over all directions of the vector €, It can be easily shown ﬁsing

the Ward identities that, along with a"g, also the field Pg +1 of dimension

d + 1 is involved in the expansion of this product in powers of the vector €,

Availability of this field contradicts to (11.3).
It has to be demanded that

pd+l g
©

The Green function of the field Pg"l may be expressed in terms of the
Green functions of the current, following the same method as the one used above
for expressing the Green functions of the fields P‘ in terms of the Green func-
tions of the energy-momentum tensor. We have:

I A
11.4 (Pd+lg g ly= @ @ -0
( ) g g g ! I=rdei1 .

where

Clu by Xy X3) = PL ) E 10y T, 0300 =
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— . Oy By X3
_(5”p+1few)(t”)a‘ 6133 av

1-d+1 1+d -3 I+d-3:|
x, 2y T Z 2y p) 2 2
[)‘f (o) X3) (¥]5) (x33) (x23)
where f is an arbitrary constant, t% is the algebra generator in the chosen

representation of the chiral field g(x) = [g(x)]g .
Particularly, for the Green function (j” gg ! j,) we have:

PI I (x )g7x,y) 70 (xg)) =

= res dyydy, GO 0y 3, 7)) G ;) gy g™ (x)ib(xy) =

The right-hand side integral is calculated by the above method (see [1, 3]
for the Thrring model). The Ward identity needed for this is:
0% (g(x;) 8™ 1 ()% O 0x ) =
=—8(xy3) 1% (x ) 87 1 (x,) 12(x,))
+8(x,5) (g0 )8 H(x) 2 e 1% +

+ ié(xsy)f“bc(g(xl)g‘l(x2)]',f(x4))
[4
e (8,, +iBe,,) % 8(xy) 8°¢e(x,) g™ (x,))

where § and ¢ are certain constants (*),

@x) g txy) il (e =

1
== (8, +ioe, )N:(x; x,)(glx) 8 1 (x,))

From the calculation we obtain:

1 1

(11.5) (6, +ife, ) —2'Cg(6v,> +iozeup) - gw(xm) +

1y

(*) The field P22 jsan analog to the central charge C at D > 2, as before. Its con-
tribution to the Ward identity has the form:

8% 8(x5,) (P27 20x) ) 0, ) 8~ 0xy))
for D =2 one has [16] that C=k.
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(11.5) 1
- -2— dCV(SVp + iaevp))\’:; x, x4))\’f‘4(x1 x,) —

1 1
_ ;dC(éup +zﬁepp);%—y gpf(xu) =0
where
— b 'be _ !
Cg = tata, fa Cfa [4 = 5aa C,,

Taking into account the relations

(5?\7 + ie}\r)(svp + ievp)gp‘r(x)= 2(67\T+ ie)\-r ) gfv(x)

;%—; (5,,‘,. +ie, )g,, () =
= (8Dp + i eup) (BM + 1'67”)7\,’:l (x4 x2))\f4(x1 xz)
one can determine: a=f =f= 1. From this it follows that
2C

(11.6) d= g
C, +cC

Note, that from the equality a =1 we have
4n

M=
k

Therefore, the coupling constant in (11.1) is also calculated from the condi-
tion of conformal invariante. As it is known [16], the -function of the model
(11.1) has zero in this point.

From the equation

<P:+1g—1gg-l>=

=/a’y1 dy, C& (e, 7,7) % (v,)8(y )8 x,)gle, e (x,)) =

=0

and the Ward identity for the Green function (j'; g2 lgg~1) we have:

1 (xy,) (x13),
—C ax,+d[ Toy4b b 22T b b

g 2 12 2 i ls
;2 12 *13

+
X
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+ it P (gx)e (x)ex)e tx,n=0
xf4 LTy 8y 2 3 4=

where rf.’ is the matrix acting on the index of the i-th field. This equation, as
well as the result (11.6) is in agreement with the results in papers [5, 17].

The scale dimensions of the composite fields O, are calculated from the
equations (P‘:+1 g ! 0, ) =0 and are in agreement with the known results,
as well.

In conclusion we wish to thank Professor .M. Gel’fand for stimulating discus-
sion at the initial stage of this work.
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