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I. INTRODUCFION

Thereis anampleclassof modelsof thequantumfield theoryin D-dimensional
spacefor which an exact conformal-invariantsolution can be built. Thesemodels
are equivalent to Lagrangianmodelsfrom a certainviewpoint describedbelow.

A method for their exact solution is proposedin the presentpaper.A closed
set of differential equationsfor all the Greenfunctions,as well as algebraicequa-
tions for the scale dimensionsof the fields, will be obtainedin each model.

The method is basedon severalstatementsproved in [1], seealso [2, 3]. The
Thirring model is simplestin this classof models. Its solution usingthe described
method is presentedin [1, 31. Here we mainly discussthe theories in the D-

dimensionalspace.A new classof modelsthat havenot beenconsideredbefore,
is derived at D = 2. Some of thesemodels coincidewith the minimal models
of refs. [4, 5]. This is true particularly, for the two-dimensionalIsing andWess-

Zumino models.Theinfinite-parametersymmetryin the restof theD = 2 models

is not realized.
The modelsin D-dimensionalspacewith D > 2 havea peculial feature:non-

trivial solutionsare possibleonly if thereis a scalarfield P of scaledimension
d~= D — 2. This field is analogousto the centralcharge(*) of theD = 2 theories.

It appears in the commutatorof the energy-momentumtensor components.
Normalizationof the 3-pointGreen function <P~p>, where p is a fundamental
field, is oneof the theoryparameterswhich are calculatedin the courseof solu-
tion. The field P(x) becomesa constantat D = 2, andthis parametercoincides
with thecentralcharge.

II. PRINCIPAL STATEMENTS

1. In any conformal quantumtheory of the scalar field ~(x), irrespective

of the type of interaction, there exists an infinite set of symmetricaltraceless

tensorfields [1, 2]

p __pd+x (x)
~ ti

1.. ~

inducedby the current of the energy-momentumtensor.Thesefields appearin
theoperatorexpansionsof theproductsor

T(x1)~p(x2) or j(x1)p(x2)

in powersof the differencex12. Scaledimensionsof the fields P~are equalto

(*) The central chargehas beendiscoveredby Gel’fand and Fuks (see Functz. Analiz. 2
(1968)92).
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d, = d + s.

At s = 0 the field F, coincideswith the fundamentalone: F, J 1=0 =

the vector field P’~1 is involved in expansionof the product j~o only, but
not of T~ p. The proof that these fields exist is based[2] on the Ward
identity.

2. It canbeshown[1, 6, 7] that every operatorequality:

(2.1) F, = 0 for a certain s

where F, is the field from the expansionof the product T~~(x1)~(x2) is
equivalentto a set of closedlinear differential equationsfor all the Greenfunc-

tionsof fundamentalandcompositefields. More exactly:eachequation

(2.2) (F(x1)ip(x2).. .p(x~))=0

is equivalentto severaldifferential equationsof theform

(2.3) L~’~~~)(~x1),. .. ,~x~))= 0

where L~’~(x, a/ax) is a differential operatorof the (s + 1) orderdepending

on all the coordinates.Its form can be calculated[1, 2, 7] from theWard iden-
tities. It is very complicatedin the general case.The resultsare given below

for thesimplest D = 2 models.

3. Equations(2.2) are true provided that composite fields 0~ are present

aswell. In caseof 3-pointfunctionswe have [1, 3]:

(F, ipO) = L~’~(~,0) = 0

where L~Q’~is a differential operator.Since the coordinatedependenceof the
Green functions (~ O~) is known we determinealgebraicrelationsfor the

dimensionsd and d of the fields p and 0.
The scalar field pD-2 with the scale dimension d~= D — 2 is especially

important among the composite fields. It appearsas an operator-valued(at
D > 2) Schwinger term in the commutatorof the energy-momentumtensor
componentsand contributes to the Ward identity for the Green function
(ipT~p T c,), see(9.1). It is essentialthat this is the only Schwinger term

compatiblewith the conformalinvariance.Wehave:

(2.4) (y,(x1)~(x2)P~-2 (x3))=
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D —2

2
(2.4) =— C 2 2 (p(x

1)p(x2))
144 x13x23

where C is a constantthat canbefound from theequation

(2.5) (F,~T~~)=L~)(~. ~)~~r~)=o

andtheWard identity for theGreenfunction (pT ~ pT ), seeSec.~

For D =2 thefield P~
2 becomesaconstant:p$~2l =—l/l44irC,

where C coincides with the central charge of two-dimensionaltheories (its
valuesfor modelsof thegiven classare presentedin SectionX).

There is anothercompositescalarfield x ~2 with anomalousdimension
t~.Similarly to (2.5) we have:

(PçoF’~2)—L~’~(~ppD_2)=
0

(F,px) = L~’
1(‘ppx) = 0

The first of theseequationsis fulfilled if D > 2, since p13 2 = 2 = const.

It can be shown that using(2.5), two relationsfor the scaledimensionsd and
~ canbe obtainedfrom the equations.Oneof themis (for D > 2):

j~ (d, t~) j(s) (d, ~)
(2.6) ~‘~(d, D — 2) = f

2~’~(d,D — 2)

where

~ + 2s
17

2 Id 1
f~)(d, L~)= I— (2d + s —D)+ — (is— 2d) —

~, LD 2

1 A(A—2)(D—~) 1 ~+2s)(A—D+2)1
—— _______ -— 1+

4 (D+2s) 4 (D+2s) j

2d — A + 2s
r

2 [A A
+(—l)’ —(2d+s—D)— —

(2d_A) LD 2
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I A(2d—A—2)(D—2d+A) 1

4 (D+2s) 4

A(2d—A+2s)(2d—A—D+2)

(D+2s)

A+2s
1~’

1 2 Id
—f~’~(d,A)= I— (2d—D+2)-F(A—2d)—

IA LD

2d—A+2s

1 1 2
— —A(A-—D+2)I+(—l)’

2 j (2d_A)

IA 1 1
I— (2d—D+2)—A——A(2d—A—D+2)I.
LD 2 J

4. Every operatorequality (2.1) can be derived from a certain Lagrangian

theoryregularizedin an appropriateway. [6, 7].
The Thirring model is the simplestcasefor illustrationof theabovestatement.

Thespinorfield ~i
1 with thedimension d1 = d + 1 that appearsin the operator

expansionof the product l111(x)j~(x+ e) makesananalogof thefield F, in the
model. Theoperatorequation ~ = 0 completelydetermined[1,3] the solution

of the model and is a direct consequenceof the field equation ai,li = A7 ~

A similar situation is also observedin the Wess-Zuminomodel, seeSectionXI.

III. FIELD EQUATIONS

The theorieswhere the fields P, are generatedby the operator product
~o(x1)T(x2) refer to anotherclass. Let us consider,for example,the theory
with the interaction = Xp

4 in the D-dimensionalspace,where p is a

neutral field. The theory, in this case, requires being further defined. Let us
regularizethe total Lagrangianby adding the term A/2 (Dp)2, where A is
the regularizationparameter,A -+ 0. The solution of this theory is determined

accordingto [6, 7] by equation(2.1) with S = 2. Really, let us write thefield
equationin the form:

(3.1) z
2(A D

2~p+ Dip — Fim2ip) = Az
1
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where x —~ p2 is an intermediatefield, and the renormalizationconstantsz
1 ,2

and Tim
2 dependon the parameter A. The operatorproduct p(x) x(x) in

the right-hand side is finite as longas A � 0, and divergeswhen A -* 0. The
constant z

1 tendsto zero togetherwith A; thus we havean ambiguity 0 x
in the right-handside. To resolveit the product p(x) x(x) shouldbe found
when A ~ 0. This product canbe definedby settingtheargumentsof the fields

apartso that theybe separatedby the A-dependingvector e =

(3.2) ip(x)x(x)j reg = fd~ ip(x)~(x+ e)

where

J C

implies averagingover the anglesof the vector e. It follow from considerations

of dimensionthat

(3.3)

andfor therenormalizationconstantswe have

t~ D D D
d— —— — d-— +1 ~—— 1

(3.4) 2 2 z2 A 2 , A 2 Tim
2

In the theory thusdefinedthe role of the regularizedfield equationsreduces
to fixing the first termsin the operatorexpansionof the productof the funda-

mental fields p(x) x(x + e). Really, after substituting(3.2) - (3.4) into (3.1)
the field equationcanbe written as

d~TZ p(x) x(x + e) =

=(e2) 2{a
0ip(x)+a1E

2 Dip(x)+a
2(e

2)2 D2 ip(x)}

On the otherhand,usingthe contributionof the field .F”~2 into the above
expansionin which the Ward identity is responsiblewe would get an additional

term a a F’ + 2 in theright-handside
II I’ •UP

(~2)2 ~. . . +a
2(e

2)2 [02 ip(x)+ a~a~F~2(x)}
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It mustnot bethereaccordingto theequation.therefore,it shouldberequired

that

pd+
2(x) = 0

Mv

A certain classof more complicatedLagrangians,eachof them with several
scalar fields ip(x) can be treatedin a similar way. For eachof them the theory

solutionis definedby oneof theequation(2.1)with s > 2.

IV. CONFORMAL EXPANSION OF THEGREEN FUNCFIONSOF THE
ENERGY-MOMENTUM TENSOR

1. Eachof the Greenfunctionscan be presentedas a conformalpartial wave
expansion.Forscalarfields we have:

(4.1) ~ = E fdl ‘4~,

where C1’ (ip~F’,)are invariant functions, F~ is a tensorfield of dimension

1 andspin s. Eachpole of the Kernel G
1, in the point 1 = in (4.1) cor-

respondsto the tensor field in the operator expansionof the product
p(x) x(x + e)

(4.2) ~re~s =

where

G,’o = (ip~Plo),~ = ~ G,, = (p,’o ~‘. . . p)

This result is the basesof all previousapplicationsof themethodof conformal

partial wave expansions,seee.g. [1, 9] and the referencestherein. In particular,
separating only the contributionof the field into the operatorexpansion
p(x)x(x+c) at c—~0wehave:

(4.4) (ip(x)x(x+e)ip..

where
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C1” = D ~“~
1x2x3) ~fA1”(x3Y) Q~”(x1x2y)dy~

ir sin ~r — —)

2

A” being the invariant propagator.

2. There is a more complicated situation where the Green function (4.1)
containssometensorfield insteadof x. The conformal invarianceadmitsseveral

different functions C
1” whenthe external field is a tensor.For example,for

the tensorof rank two there exist threetypes of functions C1” (at s ~‘ 2):

(4.5)

where ct, j3, ~ are arbitraryconstants.Explicit expressionsfor thesefunctions

aregiven in [2, 8]. The analogto the expansion(4.1) in this caseis:

(4.6) TM;~ ~1fdl ~ +

+ + ~4~]
If all of the threekernels ~ havea common pole in the samepoint 10,

then thereare threedifferent fields ~ of the samedimension l~:The Green

functionsof thesefields (for a given s anddifferenti’s)
(4.7) (f~ip. . . ip), (P

1~ipT), i = 1, 2, 3

are different.However,thefunctions

(4.8) (p1(l) ,~ (p~~
2~ipx) (P,~ipx)

havethe same coordinatedependence.The samething is true for the two-point
Greenfunctions

(4.9) (p(l) p(l)> = (p(2) p(2)) = (p(l) p(l))~
ox x5 o o~ o~ ‘o~

We assumebesidesthat

(4.9a) (p(i) p(k)>
0 for i~/= k

Os Os

3. Let us considerthe contributionsof the fields P5 into (4.6). We aregoing
to show that the Green functions (pc~~~ipT) can be presentedas a certain
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combinationof a powerfunction with two typesof quasiocal terms (see (4.14)).

Indeed, the conformal-invariant Green functions d~’ C’,’ havethe following
structure.All of them have poles (see [2, 10]) in 1 = d + s due to the factor

D+l-d-s

(x~3) 2

Wehave[11]

— 1 27r
012

(4.10) (x2) 2 _ — — Ti(x)
� e ID

F—
2

It canbe shown[8, 10], that theresiduesin the polesmeettherelation

(4:11) D(D — 2) res C” + D res C1’ + res C1’ = 0

l=d+: I=d+s 3tov

Therefore,thereis aregularcombination

(4.12) ~ =D(D_2)C?~~+DC’
2’~~+C’3’Mp

equal to [10]

(4.l2a) ~ I,=d+, (x1 2) T(X3 ~...} +

(x2)2 -d 2 — (D — 2) ~ ~ ) —

; :73,)2~ M,(x3x2),

(x~x2) = Xx1 (x3 x2) X~1~ x2) — traces,
(x12)~ (x13)M

A~t(x x )= —____
~i 3 2 x

2 x2
12 13

where {. . . } denotesquasilocalterms that contain derivatives of Ti(x
13). They

are too cumbersome for being presented here. Two other functions at 1 = d + s

are obtained by calculating the residue of C~”2~.Wedenote them as:

(4.13) C
5 = res d’ , C’ = res C’

2’

lpv 1d+, lpv 2pv l=d+,

Explicit expressionsfor them for s ~‘ 2 are very tedious,being simpleonly
for s = 1:
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~ ~(x~2) [a~~a~s6(x13)+

(x12)M 1
+

2DTipp 2 ä(xi
3)+(1.L4~P)_trace]

x12

Therefore,the generalexpressionfor the Greenfunction (p(i) ipT) can be

written in the form (s ~ 2)

(4.14) (p(i) cpT~~)= g. ~ + cx~
0C’~~+ a~’~~

where g
1, c~’~and c4° areconstants.The importantfeatureof thesefunctions

is that theyhavethe same(up to a factor)powerpart C”f.

4. We are going to show now that only two, out of the three, fields p~I)

can contributeinto expansionof the product ip(x) x(x + e). Let us pass now
to the new fields

3

p(~_+Y~ci~’ F(k)
s ~ k s

k=1

preserving the conditions (4.9) and (4.9a). The new fields should be chosen

so that one of the three(at a given s) Greenfunctions (pW ipT~,~) consistof

quasilocaltermsonly (4.13):

(4.15) (p(l) ipTMv>=O~lC’~pv+a2 C’2~~

The correspondingWightmann function in the Minkovski spaceis equal to

zero:

(4.16) (0~P~l)ipTj0)~,fl~=0

It can be assumed,thus, that the field F~’~is absent:it is zeroas an operator.
Thenit is possiblethat

(4.17) <p11) p~)= 0, (p,(fl ipT5) =quasilocalterms.

Later this assumptionshouldbe verified by studying the function (p~ip~).

Condition (4.17) meansthat the pole correspondingto the field p~) is absent

from its partial wave expansion,although thereis such a pole in the first term
of the expansion(4.6). Note,that the operatorequality p1’) = o means,besides

(4.17), that (pp1pp~))= 0, etc. For our purposes, only the condition

<p(l) ipx) = 0 shouldbe verified, sinceit ensuresthat thereis no contribution
of the field pt!) to theoperatorproduct p(x) x(x + e).

The quasilocalterms (4.15) are neededin the theoryevenif p~) 0. Their

sensewill bediscussedin the following Section.
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Therefore,the operatorequation(2.1) as a matterof fact impliesthat

(4.18) p12) =F~3~=0

V. COMPLETE CONTRIBUTION OF THE POLES IN 1= d + s

1. Let us consider the Greenfunction (~x~T~~ Its partial wave expansion
canbe written in theform:

(5.1) <~X~Ttiv)Efhh1p(l,s) di~’~3~+

+ ~fdlPtr(l~s) ~

where

(5.2) C1’~ =A
1(l,s)C

1~” +A
2(l,s)C~’

The function A1 ,2(l, s) and p(l, s) are derived [2, 10] from the Ward iden-
tity,

(5.3) CtJ’ = C~g+ B1(l, s) C’l’MV + B2(l, s) C
1~’

The coefficients B
1 2(1, s) are derived from the transversalitycondition

a CtT = 0. Wehave [8]:
to toP

(5.4) B,(1, s) ‘—‘ B2(1, s) — ______________

Il—s —d
I~’1

\ 2

i.e. C~’~differ from C’~ , see(4.12a),by quasilocaltermsonly.

The completecontribution of the poles in the point 1 = d + s can be de-

terminedfrom (4.4). It is equalto

(5.5) (ip(X)x(X+e)ip(X,)T~~(X2))~~,0

-r ~ + p2 C~) + res ~tr

(~2) 2

The coefficients i1 ,2 i1 ,2(d, s) are determinedby the Ward identity.

The right-hand side is the common contributionof the fields F’
2), F’3) and
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quasilocalterms(4.15):

(5.6) p1 C~ + p2 C’2 + res p~ C~’5=

= ~ C’~~+ a2 ~ + F~
2~ipT~~)+<p,(3) ~

Here we took into account that with regardfor (5.3), (5.4) and (4.13) one

canwrite

(5.7)

= f3 C’ + jl C’ + res ptT Ct~’
1 l~v 2 2pV 1=d+s

Thus, the Ward identities fix the sum of terms of different nature: a part

of the common contribution of the fields p,(2), F’3) (the terms j3
1C’1~+

+ ~2 C’2MP) and the contributionof quasilocalterms(4.15).Wehave

(5.8) a1 +/3~ =p1(d,s), a2 +132 =p2(d,s)

Assuming, in accord with (4.18), that p12) = F’
3) = 0 for a certain s, we

shall obtain a number of consequences in the sections below. One of them is

that = ~2 = 0, and in (5.5) only the contributionof the quasilocalterms
(with the sames) is preserved:

(5.9) (~(x)x(x+e)ipT~)~
0 (a1 C’1~+a2 C~~)

(~2) 2

where a1 and a2 are fixed by the Ward identity. Note that thesetermsare

needed in the theory. If we demand that they be absent(i.e. connect them

to the field p(l) and assumethat p11) = 0) then the contradictionto the

Ward identity appears.The meaningof theseterms is that they contributeto
the field equationfor the Greenfunction (ipopT ~). Thesearejust thequasiocal
termswhich appearfrom the commutator [ip, T0 I whencalculatingthe deriva-

tives 0 and 02 of the T-orderedproduct of the fields ~ ~,. A detailed
descriptionone can find in [10] where the Greenfunction (ipip~/~) containing

the current is takenas example.The correspondingtermsthereappearfrom the
commutator [ip, j~] when calculating the derivatives 0 (‘p’.pj) in the field

equation.

2. Let us find the solution of the Ward identitiesfor arbitraryGreenfunctions
= (T~5ip(x1), . . . , ip(x~)). We are going to show that two out of the

threekernels in (4.6) are uniquelly determinedby the Ward identity, see
(5.13). We take advantageof the fact that a T~ is transformed[9] as a con-
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formalvectorof dimensional D + I. The quantity a~~ is completelydeter-
mined by the Ward identity and, thus, it is possible to find the kernelsof its
partial wave expansion. It involves two invariant three-pointfunctions of the
form V~’= a~(P~p Tn). It is convenientto choosein (4.6)

C1 =CtT -

3to” Mv

Then the two invariant functions V~’ and ~ in the expansionof
a ~ areequalto:

to Mv

(5 10) V1 = a C1’ v” = a C1’
1M to ‘tsr’ v 2pv

Their forms are given in [8]. Wehave:

(5.11) ~ +

The kernels ~ and ~ are unambiguouslydeterminedin terms of

the quantity a ~ , seeSectionsVI, VII, that in known. from the Ward
identity. The functions V~ and V1~ have poles in the points 1 = d + s.
Thetotalresidueis equalto

(5.lla) res ~ = ~ +

where

V — res V1’ ~ — j = I 2iv — l=d+s lv’ i,d+, — ii, I 1=d+:’

The partial wave expansionof the Greenfunction ~ canbe easilyrestored
from (5.11). When going from a ~ to ~ the following replacement

shouldbedone

(5.12) V’,’ -+ ~ = ~ + A(l, s) C~T~

V1 —~C” = B(l s) Ctr + C1’
2v 2tsv Mv 17(/—d—s) ~

and a trasverseterm added. Whateverthe unknown coefficients A(l, s) and
B(l, s) in (5.12) are, one canalwayspassover to suchcombinationsof the func-

tions (5.12) that C~”v satisfy the condition(5.2). So, we have for the Green
function
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(5.13) ~ =Lfdl[ )~~~M’4~,0 +

Thisis the generalsolution ~ofthe Ward identity. It has the following features:

I. The kernels ~ and ~ l/(/ — d — s) (~“~are known from the
Ward identities;

2. res C” = a1 C’itov + a2 C
8

2~= quasilocalterms;

3.C~’~VI,d+,=13lC~v+132C~+B!(d,S)Clr (5.14)

wherethe constantsa12 and I~,2 are knownfrom the Ward identity.
4. The kernel ~ haspoles in the points 1 = d + s.

5. The third term in (5.13) is transversal.

6. The function B’(d, s) in (5.14) and the kernel ~ in the third term
haveremainedunknownquantities.

7. res ~ = (p(

2) ,p . . .

1=-d+s ‘

VI. CONDITION FOR THE ABSENCE OF THE FIELDS F,

Our tasknow is to study the consequencesof the equations

(6.1) (P,(2)ip
1 . . .p)=(F(

3~p
1 . .

To this end let us expressthe Greenfunctions <p~i) ip1,. . . , ip,,) with i = 2, 3
in terms of the kernel of the partial wave expansion(4.6) of the Greenfunc-

tion G~’~=(T~ip,,... ,ip,~), see(6.lO)below.
The contribution of all the polesin the point 1 = d + s to the Greenfunc-

tion ~ canbe written in the form (see(4.2)and (4.6)):

(6.2) res G~=res ~ +G~j~

Here the function C” is chosenso that its residuein I = d + s coincide
with the quasilocaltermin (5.9):
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(6.3) res C
1’ = a

1 C,’ + a2 C2
1=d+s ~ to P

while G(”3 I ~ is the contribution of the fields p12) and p~

3) together

(6.4) G~)I~,=~ + )MWM~~

The greenfunctions ~ and ~ canbewritten in the form

(6.5) G~2~~

(6.6) ~ = (F,(l)ipT ) =g

3 ~ + a~,
3~C’

1+ c4
3) C’2MV

As assumed in eqs. (6.2) and (6.4) the invariant functions C’
1’,~~in (4.6)

are chosenasfollows:

(6 7~ C
1’ = d C” = G~2~C1’ = G~3~
ltov ~v’ 2pr 1=d+: , ‘ 3tov l=d+’ :

TheGreenfunctionsthen

(6.8) ~ = (P,(2),p
2 . . . ip,,), ~ = <p(

3) p

2 . . . p,,)

are derivedasresiduesof thekernels G~,
2J~and ~ in expansion(4.6).

Let us expressthesekernelsin term of the Greenfunction G~3. Fordoing
this, similarly to [1,2] we introduce three more invariant 3-point functions
of the type of (P,’ ~ i~)where ~ is a scalarof dimension D — d, and
is a tensor of zero dimension. Their notationsare C1’ Ct’ and ~l,zv 2~v 3pv

Thesefunctions should be selected so that the orthogonality conditions be

fulfilled

(6.9) ,Y~~~
1’’ =M4~~,” = 0

etc. Normalizationof the functions C’ is establishedby the condition

(6.10) ~ i 1,2,3

The notation in (6.9) and (6.10) are the sameas in [1, 2]. The dot on the

line meansthat it hasbeenalreadyamputated;therefore,hereit is Ti-functions

and not propagatorsthat are put in correspondencewith the internal lines.
Now we havefor the kernel ~ in (4.6)
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(6.11)

More detailed description of relations(6.9) - (6.11) will be given elsewhere.

A more simple case of the current containingfunctions is consideredin [1, 2].
Using equations(6.11) we obtain two conditions for each Greenfunction

G~3:

(6.12) ~ =0

(6.13) ~ =0

for thegivens.
Equations(6.12) and (6.13) representa sufficient condition that ensuresthe

absenceof the fields ~F. Thisstatementrefersto the field theoriesat D > 2.
There is solely equation (6.12) in the two-dimensionalspace, see SectionX.

In this case(6.12) is necessaryand sufficient conditionfor the field P, to be

absent.

VII. DIFFERENTIAL EQUATIONS FOR THE GREEN FUNCTIONS

Let us transformthe conditions(6.12) and (6.13) to a more suitable form.

Introducenew fields

3
p’(i) ~‘ a1 p(k) 1=123

I k , ‘ ‘

k=1

so that the orthonormalizationconditions(4.9), (4.9a)be preserved.

The coefficients c4 form a three-parametermatrix family of the groupSO(3).
There is a unique choice of parameterswith which, firstly, the function

ip Ttov) remainsquasilocal,see(4.15) and,secondly,the Greenfunction
ip T~)transversal:

(7.1) ~‘ (F(3)(x
1)p(x2)T~~(x3))=0

Hereandbelow theprimesfor notationof thenew fieldsareadmitted.
The choice of the fields is unambiguouslyset by theseconditions.With such
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a choice of the fields it is convenient to use partial wave expansionof the Green

function ~ in the form (5.13). Residues of thekernel G~’,~5and ~ in the
pole 1 = d + s are explicitly expressed through the Green functions G~12)
and G~~3)of the original fields. The total contributionof the fields canbe
now rewritten in the form

(7.2) G(~1)I p = res +

Unlike (6.3), thesecondtermhereis transversal

In additionto (6.9) let us demandthat

(7.3) ~ ~

=MW~r~~~W= 0

i.e. that and C2 be orthogonalto the transversalfunction. As it is shown
in [8, 10], such functions C are “longitudinal”. For ~ particularly, we

have17,8].

(7.4) C2(X1 x2 x~)= <p1 (x1) ip~(x2)T(x)) =

= axxB ~ to + ~ — — Ti a~B

D pv X,ts1... totThe orthogonality conditions (7.3) are fulfilled idenJ~icallyif ~ and C2are substitutedin this form. Thefunctions B areequal[8] to:(7.5) B ts5~l x2 x3) = ~ (x1 x2 x3) + ~2ts,ts0... to,(x1x~3)

B =AXO(x x )X’~° (x x )A(x x x )
Ito ,toi-.. to5 to 1 2 ~ ~ 3 2 1 2 3-

B2~~~, = ~ ~ k(xlI)X~1 ~k• to5~3x2)A (x1 x2 x3)
13 k=1

1+d -D -d -2 1+d-D -,+2

A -~ 2\ 2 2~ 2~(x1 X2 X3j — (x13, (x23,

I -d+D-s+ 2

(x~2) 2
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xx
g(x) = ~ —2 x2 and X~’~(x

3 x2)

aregiven in (4.l2a). Thereis an unknown constant ~ in (7.5). It will be deter-
mined later. The function C differs from C by this constantvalue.

ltov 2pv
Let us again considerthe conditions(6.12) and (6.13). With our choiceof the

functions c2pv and C3~ one of theseconditionsis equivalentto therequire-

ment that the first term in (7.2) be absent,while the other implies the absence

of the secondterm. Let usconsiderthe first condition.We are going to demon-
stratethat it is equivalentto the differential equationfor the Greenfunction

G(x1 x2 )=(op1(x1)op2(x2). .

Really,

dy2 C2~~~~,(x1y1y2)

(p1(v,) T (y2)p2(x2). .

=_2resfdyj dy2 B(x1y1y2)3~s

(ip1(y1) T (y2)ip2(x2) . . .

Let us substitutehere ~°‘ (p, Tip2 . . . p,,) using theWard identity:

a~°(~1T~ip2.. . ip,,) = —[~ Ti(y~— x.)~i+

(ip1 (y1 )p2(x2). . . ip~(x,~)).

The integral over can be calculateddue to the Ti-functions (the term

proportionalto Ti(y1 — y2) makeszerocontribution). The remaining integral
over y can be also calculated.Let us introduce res under the integral

sign, and then determinethe residueof the expressionin the integrandusing

relation (4.10). As a result, subject to the integration over is the sum of
termswith derivativesof Ti(y1 — x1) up to the order (s + 2). It canbeshown

that thederivativesof higherordercancelout.

Calculatingnow



EXACTLY SOLVABLE MODELS OF CONFORMAL-INVARIANT QUANTUM ECC. 619

fdYi

weobtain thç differential equation -

a a
(7.6) L(1)(xi .. .x,,, ... (ip~(x1).. .

where the differential operator ~ dependson the tensor structure of the

fields ip1 and on the form of the Ward identities. In the generalcasethisequa-
tion is extremelycumbersomeandwill begiven in anotherpaper.The calculations
becomeessentiallysimpler in the two-dimensionalspace.At D = 2 and s = 2

they give [6, 7]:

3 Y I d
(7.7) ~ )2 — ‘~ — ax, — — ~X~3) 2 —

2(d+l) fr-~ x~1 ~ 2

— — [(x~2)2 + (x~4y2]~

where x~= x1 ±I x2 are the light conevariables.This coincideswith the equa-

tion in [4] for the two-dimensionalIsing model. The two-dimensionalmodels
for all s are studiedin [12]. It is shown,in particular,that at D = 2 and s = 2,
3 equations (7.6) coincide with the correspondingequationsin the minimal

modelsin paper [4], seealso [13] and the referencetherein, whereasat s ~ 4
theydiffer from them.

Note that the differential operator L~’~in (7.6) dependson the parameter
~ involved in the function (7.5). This parameteris calculatedtogetherwith the

field dimensionsand other parametersof the theory, seeSection IX. In parti-
cular, when deducingequation(7.7), it was taken into account that ~ = 1/4
for D = 2, s = 2. The third derivatives,at this value of ~i, are cancelledfrom
(7.7).

After differential equations(7.6) havebeensolved onemayaddressthe condi-
tion (6.13). The only thing to do now is to verify if it is fulfilled, after of the
solution of equations(7.6) is substitutedinto it for the casewhen one of the
fields ip~ is the energy-momentumtensor. In particular,for the Greenfunc-
tion (p x p T~) determinedfrom (7.6) the condition (6.13) will meanthat

at a given s the pole in 1 = d + s in absentfrom thesecondtermof expansion
(5.1).
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There remainsone more condition of selfconsistencymentionedat the end

of Section IV, which providestheabsenceof the contributioninto op(x)~(x+ e),
from the field p11) see(4.17). To checkit we shouldconsiderthe partial wave
expansionof the function (op x p x), derived from (7.6) and seethat at a given
s the pole in I = d + s is absent.This condition is identically fulfilled in two-

dimensionalmodels.

VIII CALCULATION OF SCALE DIMENSIONS OFFIELDS

Dimension d of any compositefield is determinedfrom the condition
(6.12) written for theGreenfunction (opT,, opO). We have:

= 0

In particular,thereare two scalarcompositefields: x and pD - 2 The field

pD — 2 hasbeenalreadymentionedin SectionII, seealso Section IX. Its dimen-

sion is known: cJ~= ill — 2. Let us considercondition (6.12) for the Green

functions

- G~p=(ipXipT~v) and

We have:

~ =resi~(~G~5’~ =0

Theseequationsproducetwo equationsfor dimension d and A of the fields
p and x:

(8.1) ff5) (d, A) + ~f~5) (d, A) = 0,

y.(s) (d, D — 2) + ~f(5) (a’, D — 2) = 0

where f~t) and f~5~are functions (2.6), and ~ is the parameterinvolved

in (7.5). Thus,parameter~ is still to be determined.

For doing this we considerequation(6.12) in the caseof the Greenfunction
= ~ opT,,). Its partial wave expansionrequiresspecialdiscussion,because

formally it has poles of the secondorder in the points / = d + s. They also

can be found in every term of the expressionunderthe sign of res in equa-

l=d +

tion (6.12).We have:
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(8.2) =

=b1(l,S)C
1

1’+b2(l,S)C
1

2’+b3(l,s)C
1

3’

wherethe functions b,(l, s) are derived from the Ward identity (9.1). It canbe

shown that they have poles in the points 1 = d + s:

l—d—s
b1 (1, s) b2(1, s) b3 (1, s) F

2

The requirementthat the fields p12) and p(
3) beabsentis, in this case,

equivalentto the threealgebraicequations

(8.3) res b
1(l,s)= res b2(l,s)= res b3(l,s)=0

Substantiationof this statementrequireselucidation of some nice technical
details (*) that are not presentedhere. We only notice that if (8.3) is fulfilled

at a certain s, thenonly onepole term remainsin the partial wave expansion
in the vicinity of 1 = d + s:

(8.4) preg(l s) ~

where pTeg(1, s) is regular,and ~ is a singularfunction determinedin (6.7)

and (6.5). Although formally the term (8.4) has a pole of the secondorder,
in fact this term leadsto the first-orderpole in the expansionof theGreenfunc-

tion (p(x + �) T~(X)opT) with respectoto e, becausethe function
analogousto (4.4) is regular.The residuein the pole is proportionalto quasi-

local term (5.9). Conditions (8.3) provide the absenceof other contributions.
So, the condition for the fields P,~

2’3) to be absentin the caseof the Green
function GT is equivalentto three algebraicequations(8.3). They determine
the parameterff togetherwith two additionalparametersinvolved in theanoma-
lousWard idendity for (op T,

(*) It can be shown that conditions(8.3) provide cancellingof poles of thesecondorder
in thesumof termsin the right-handsideof equation(8.2). (4.11) is usedin theproof.



622 ES. FRADKIN, M. Ya. PALCHIK

IX. ANOMALOUS WARD IDENTITY

The mostgeneralform of the Ward identityadmittedby conformalinvariance
involves anomalous terms of two types (at D > 2)

a; (T (x ) T (x )op(x
3)p(x4))=

p ~ 1 pa 2

Ti(x13)ax3 +Ti(x )a-~~—v 14 v -

d
— — ax, [Ti(x13)+Ti(x14)]+

Dv

+Ti(x12)a~’—2a1a~’&(~12)~(T~0(x2)op(x3)op(x4))

+2~aa;Ti(x )(T (2 p 12 va x2)ip(x3)op(x4))+

+ a3a~’Ti(x1 ) Ti (T pop) + (p~o)— trace}2 vp ra

) axZ a’~,~ a +2C2~’Ti(x12)a~’a~2+

(9.1) +2C3 ~ Ti(x12)Ti~~ ax, ax2 +e ~‘ a” Ti(x12)a~’+a r 1 p a

+ 2e2 a~a~Ti(x ) a~+ 2e Ti a”~ax~Ti(x) ~2r ~ 12 p 3 vp a r

+ e4 DTi(x~)Ti ax, + 3f ax, ~ a~’Ti~x12) +Vp U

+3f2Ti axloTi(x12)a

+ (p*~cr)— trace}(P’~
2(x

2)op(x3)op(x4)),

where (DD - 2 ~copis theGreenfunction (2.4)

D
Da1+2a2+2a~=—, ~2~3l

~‘ 2

6
C1 = f2,

(D— l)(D—2)

3D
(9.2) C2=— f

2(D—1)(D—2) 2’ C3=C2

3D
e1= f2,

(D— 1)(D—2)

3(D
2—4D+2)

e
2 =

D(D—l)(D—2)
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3D
e3=— f2,

2(D — 2)

6 3D—2
e4 = f2, f1= —

(D—2) D(D—l)

The calculationsare given An our (with V.N. Zaikin as a co-author)paper

[12].
In fact, one may put f2 = 1, becausean unknown normalizing factor C

is involved in the Greenfunction (FD - 2 opop), see(2.4). Therefore,thereare
two unknow parameters.Let them be a1 and C.

The functions b1, b2 and b3 in (8.2) are derivedfrom the Ward identity
andexpressedthroughtheseparameters.Thus,the equation

(9.3) res =0

is equivalentto the threealgebraicequationsfor threeparameters

(9.4) ~, a1, C.

From the abovesaidit follows that the anomaloustermsin theWard identity

are neededdue to the structureof the theory,becausewithout them the number

of equationswould exceedthat of the parameters. -

X. TWO-DIMENSIONAL THEORIES

Setting D = 2 in all equations we obtain an infinite family of two-dimen-
sional solvable models. All the calculations become much easier at D = 2 because:

1. There are only two independent invariant functions of the type of
(F 1, opT ). Any asymmetricaltracelesstensor T canbe representedin the

form: T = a T + a T — Ti a T therefore any conformal-invariant
~V toy vp ,,vX X

functionis representablein the form (7.4).

2. There is no transversalfunction dT ; thus insteadof two fields p(
2)

and p,Y) only one field ~ F
5 is available.Equation (6.13) becomesun-

necessary,and (6.12) is still equivalent to the differential equation,see(7.7).
All calculationsof SectionVII can be formally transferredto the caseof D = 2.
Thecalculationscanbe easily carriedout in the light conevariables.

3. The anomalous Ward identity essentially simplifies: the terms —~a.



624 E.S.FRADKIN, M. Ya. PALCJ-JIK

disappear;the field pD - 2 is constant;and out of the last nine termsin (9.1)

only two termsdiffer from zero; also,the third term is absentfrom (8.2). Thus,
at D = 2 equation(9.3) is equivalentto the two algebraicequations

res b = res b =0

1 l=d+: 2

for the two parameters

a, C

where C is the centralcharge.
Detailedcalculationsfor the simplestmodel fixed by the equation pJ-i- 2 =

are given in [6, 7], and in the general caseof arbitrary s they are presented

in ref. -[1 2]. In particular,for the parameters~ and C it is obtainedtherethat

— —

2s

F(d+l) 1
C=12F(s—l) (—lYl——(s+l)d(d+s—2)—F(d+s+l) 4

- 1 F(d+s—l) d+s—l
— (d—l)(d—2) —~

F(s + 1) F(d) d + s — 2 s + I

This coincideswith the Kac formula [14] at s = 2, 3 and the corresponding

models coincide with the minimal models of ref. [4]. Theories of a new class
appear, however, at s ~‘ 4, for which theinfinite-parametersymmetryis broken
down to a six-parameterone.

The infinite-parametersymmetry modelsalso can be obtainedusing this me-

thod. To this end it shouldbe extendedto the caseof gaugetheoriesand then
the averagesof nonlocal objects like the conformalstring of paper [15] should
be considered.This is possiblefor any D. Gauge-covariantfields will serveas

analogsfor the fields F,. At D = 2, in particular,they are certain combina-
tions of the fields P, andof analogousfields generatedby the operatorproducts
T(x1) F5(x2). Thesecombinationswill obviously coincidewith the zero fields

that define the minimal models.This generalizationof the methodwill be studied
in the subsequentpaper.

XI. WESS—ZUMINO MODEL

There are models where the fields F, are generatedby a conservedcurrent

rather that the energy-momentumtensor. The Thirring model is a simplest
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example[1]. Generallyspeaking,this is possiblein the theorieswith no less than

threedifferent conformal-invariantfunctions of the (j,, op F,) type.The two-
dimensional Wess-Zumino model

S=~ tr(ag~ag)d2x+
4X2) ~ to

+ ~fEABC tr’a~gg’a~gg’a~g)d3y

belongsto this class.Thereexiststhe conservedcurrent

/ = (Tin + iae )g1 aug,

where

(11.2) a= — X2k
4ir

Letusconsiderequation

(11.3) (6 + lae,,) a~g(x)=g(x)/~(x)

where the right-handside is treated as the limit of operatorproduct g(x + e)
j(x) averagedover all directionsof the vector e. It canbeeasily shownusing

the Ward identities that, along with ag, also the field F” + 1 of dimension
d + 1 is involved in the expansionof this productin powersof the vector e.

Availability of this field contradictsto (11.3).
It hasto bedemandedthat

F”÷1 =0
p

The Green function of th� field P’1 ÷1 may be expressedin terms of the

Greenfunctionsof the current,following the samemethodas theoneusedabove
for expressingthe Greenfunctionsof the fields F, in termsof the Greenfunc-
tionsof the energy-momentumtensor.Wehave:

(11.4) ~

where

C~,,(x
1x2x3)=(~(x1)~

1(x
2)~(x3))=
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=(Ti+ife)(t°)”~ Ti~i axs

l-d+1 l+d-3 1+d-3

(x2 X3) (x~2) 2 (x2) 2 (x~3) 2

where f is an arbitrary constant, t’~ is the algebra generator in the chosen

representationof the chiral field g(x) = [g(x)]~.
Particularly, for the Greenfunction (/ g g 1 1) wehave:

(Fd+1(x
1)g_l(x2)/b (x3))=

=rsa5’1 dy2 ~t~~(x1 y1 v2) (/(y2)g(y1)g
1(x

2)i~(x3))=

The right-hand side integral is calculated by the abovemethod (see [1, 3]

for theThrring model).The Ward identity neededfor this is:

a~(g(x1)g’(x2)/ (x3)/~’(x4))=

= — 6(x13) ta (g(x1)g—
1(x

2)/~(x4))

+ 6(x23)(g(x1)g
1(x

2)/~ (x4)) ta +

- +

— (6 + I~Evp) ax, 6(x34) 60b(g(x1)g~(x2))

where 13 and c arecertainconstants(*), -

(g(x1)g
1(x

2)j~ (x3)) =

= — ~

Fromthe calculationweobtain:

(11.5) (6~~+ifC~)~Cg(6pp +iae~~)~ g(x~) +

(*) The field pD -2 is an analogto the centralcharge C at D > 2, asbefore. Its con-
tribution to theWardidentity hastheform:

&~36(x3) (~
2(x

1)g~x1)g~X2))

forD=2 onehas[l6]that C=k.
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(11.5) 1
— — d C(6~+ Ia e) Xi (x

2 x4)X~4~x1x2) —

1 1

— —dC(6~~+if3e~~)—~-g(x14) =0

ly

where

Cg = t~ta, fab c p bc = 6aa’

Takinginto accounttherelations

~

2 ~

6vp +ie~)g ~ =

=(6~~+ie~)(6~ +1e~)Xni(x
4x2)XX4(x1x2)

one candetermine:a = 13 =f= 1. From this it follows that

2C
(11.6) d= “

- ç+C

Note,that from the equality a= I wehave

47r
= —

k

Therefore,the coupling constant in (11.1) is also calculatedfrom the condi-
tion of conformal invariante. As it is known [16], the 13-functionof the model

(11.1) haszero in this point.
From the equation

=fd~i dy2 C~ (x1y1y2) (/a (y2)g(y1)g~(x2)g(x3)g
1(x

4))=

=0

and the Ward identity for the Greenfunction (/a gg

1gg 1) we have:

Cg a~i+d[~’~)T tl~t~— (:~:)Tt~ ~ +



628 ES. FRADKIN, M. Ya. PALCH1K

(x14)
+ 2 ~ ~ (g(x1)g

1(x
2)g(x3)g’(x4))=0

x14

where t~’ is the matrix actingon the index of the i-th field. This equation,as
well as the result(11 .6) is in agreementwith theresultsin papers[5, 17].

The scale dimensionsof the compositefields are calculatedfrom the

equations (pd+ 1 g~ O~) = 0 and are in agreementwith the known results,

as well.

In conclusionwe wish to thankProfessorI.M. Gel’fand for stimulatingdiscus-
sion at the initial stageof thiswork.
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